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Abstract

The need to compute potentials of the form R�m for m P 1 occur in a variety of areas ranging from electromagnetics to
biophysics to molecular dynamics to astrophysics, etc. For instance, Coulomb, London, Lennard-Jones, H-bonds are of
the form m ¼ 1, 5, 6 (and 12), 10, respectively. For a systems with N source/observation points, the cost of computing these
potentials scales proportional to OðN 2Þ. Methods to overcome this computational bottleneck have been a popular research
topic for quite some time. For instance, the fast multipole method (FMM) and their cousins—tree codes—have revolution-
ized the computation of electrostatic potentials (m = 1). These methods rely on a hierarchical decomposition of the com-
putational domain, i.e, construction of a regular oct-tree decomposition, and exploits the principle of divide and conquer
to compute potentials at each observation point. This paper presents two methods, in the vein of FMM, albeit based on
Cartesian tensors. The salient features of the first are as follows: (i) it relies on totally symmetric tensors and (ii) the errors
are independent of the height of the tree. The second method is presented specifically for m = 1, and relies on traceless totally
symmetric Cartesian tensors. Using the relationship between traceless Cartesian tensors and spherical harmonics, it will be
shown that this technique has the same computational cost as the classical FMM. Generalization of the second method for
m 6¼ 1 is trivial; however, one needs to use totally symmetric tensors instead. Finally, in the whole computation scheme,
only the translation operator (that used to traverse across the tree) depends on m. Convergence of the proposed method
is proven for all m 2 R. Numerical results that validate the cost and accuracy are presented for several potential functions;
these include those typically encountered in the analysis of physical systems (Coulombic, Lennard-Jones, Lattice gas).
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

Computation of pairwise interaction (for instance, Columbic interactions, London potentials, or Van der-
Wall’s potential, etc.) is important in numerous research areas that are as diverse as biophysics, physics, com-
putation chemistry, astrophysics, and electrical engineering to name a few. For example, m = 1, 5, 6, 10
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corresponds to Columbic interactions/gravitational potentials, London dispersion potentials, van der Waals
potentials, and H-bonds, respectively. However, it is well known that computing these potentials requires pro-
hibitive computation resources, both in terms of CPU cycles and memory. These costs are exacerbated when
such computation is required either in a molecular dynamics or a Monte Carlo setting. It is well known that
the CPU cost of computing mutual interactions between N particles distributed in R3 scales as OðN 2Þ. Con-
sequently, this has engendered the need for computational methodologies that are efficient both in terms of
memory and CPU time. Some of these include cutoff techniques [1], particle mesh algorithms [2–4], Ewald
summation (based on an assumption of periodicity) [5,6], tree-codes [7–9] and fast multipole methods
(FMM) [10–13]. Tree codes (and FMM) are based on subdividing the computational domain into hierarchical
subdomains, and computing the influence between subdomains that are sufficiently separated using multipole/
local expansions. The fundamental differences between FMM and tree codes notwithstanding, these methods
have revolutionized analysis in application domains ranging from astrophysics to biophysics to engineering
sciences.

At this point, we note that there is rampant confusion in terminology; in fact, the terms FMM and tree
codes are used interchangeably in the literature that we have come across. This is not surprising as the two
techniques are closely related. The differences between these two methods, albeit subtle, are significant. As
was elucidated in [14], tree codes compute interactions between source pairs using one of three methods: (i)
directly, (ii) evaluating fields at each observation point using multipole expansion due to a cluster of sources,
or (iii) using local expansion at observation clusters to find fields. The decision on the operation used depends
on which one is computationally efficient. On the other hand, the algorithmic structure of FMM enables the
computation of potentials in an optimal manner [14]. Two addition operations that permit this are aggrega-
tion and disaggregation functions. These permit the computation of information at coarser (or finer) using
information at finer (or coarser) levels. It so happens that for m = 1, tree codes typically rely on Cartesian
expansions, whereas FMM is based on spherical harmonics. In this paper, we develop theorems and opera-
tions necessary for constructing FMM methods ("m) using Cartesian tensors.

Tree codes for computing the Lennard-Jones potential was developed as early as 1996 [15]. More refined
methods for computing the same were proposed by [16–18]. All three methods essentially use Taylor’s expan-
sion in the Cartesian coordinates, and some of these use Gegenbauer polynomials based recursion techniques
to accelerate translation of multipole expansion to fields at the observer. In 2005, [19] proposed a variation of
these schemes using Taylor’s series expansion in a different coordinate systems. Other techniques that have
been proposed rely on precorrected fast Fourier transform and using a singular value decomposition. Devel-
oping FMM-like techniques using special functions has proven difficult [19] as Gegenbauer polynomials in the
spherical coordinate system are not separable. However, it is well known that Gegenbauer polynomials can be
written in terms of Legendre polynomials. Sarin et. al. used this fact to develop a tree code; since Legendre
polynomials are used, an FMM scheme may be readily derived from these expressions as well. Recently, Chow-
dry and Jandhyala [20] developed operators necessary to extend their scheme to a multilevel setting. However,
using Gegenbauer polynomials for either recursion or developing tree codes has a singular disadvantage; these
polynomials are defined for m P � 1/2. Consequently, methods that rely explicitly on these cannot be general-
ized to non-oscillatory potentials (like the lattice gas potential) nor can one prove convergence 8m 2 R.

The motivation for writing this paper are fourfold: (i) To formulate a fast method for 1/Rm in terms of
totally symmetric tensors, and exploit these to reduce the costs. (ii) To introduce new theorems that enable
exact traversal up and down the tree. This implies that one does not accrue error as the height of the tree
increases. (iii) To prove convergence 8m 2 R. (iv) To demonstrate the intimate connection between the classical
FMM introduced by Greengard [10] and its Cartesian counterparts using traceless Maxwell Cartesian tensors.
This connection will show that properly constructed Cartesian FMM schemes have the same computational
complexity as classical FMM. Another salient feature of the proposed method is that it can readily form the
framework for rapidly computing potentials that are non-oscillatory (e.g. Lattice gas, Yukawa, Gauss Trans-
form, Lattice Sums, etc.) without the use of special functions (application of this methodology to some of these
potentials will be presented elsewhere). Furthermore, this algorithm is capable of aggregating different poten-
tials within the same simulation tree.

Development in fast methods for computing Columbic interactions (m = 1) have progressed along two
fronts: exploiting the representation of the potential using either spherical harmonics or Taylor’s expan-
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sions. The latter was introduced at approximately the same time as the Greengard’s first paper on three-
dimensional FMM [21], and has found extensive application in tree-codes. Recently, FMM codes based on
Cartesian expansions have used recurrence relations to avoid derivatives [22]. Typically, asymptotic com-
putational cost of schemes based on Cartesian expansions is higher. This is because spherical harmonics
are optimal for representing harmonic functions in three dimensions. For a system with N mutually inter-
acting particles, it can be readily proven that for a one-level implementation, the computational complexity
scales as OðP 4NÞ and OðP 6NÞ for FMMs based on spherical harmonics and Cartesian expansions, respec-
tively. Here, P is the number of harmonics used in the computation. This cost can be reduced by choosing
the number of particles at the lowest level in the tree in an optimal manner. Our interest in revisiting these
schemes is motivated by the following observations: (i) Taylor’s series expansions provides a natural
framework for developing addition theorems [23]; (ii) Taylor’s expansion involves representing the fields
in terms of Cartesian tensors; (iii) there is an intimate connection between Cartesian tensors and the spher-
ical harmonics. These connections are well known, and have been explored extensively (as early as Max-
well!); see [24–26] and references therein. The following statements hold true: (i) components of a traceless
tensor of rank n serve as constant coefficients in a spherical harmonic of degree n, and (ii) there is a class
of traceless tensors of rank n whose components are n-degree spherical harmonics functions of x; y; z.
These connections imply that there should be an intimate connection between the two seemingly disparate
methodologies, and one should be able to obtain a similar cost structure for both methods. As we will
show, the recurrence relationship that were conjectured for translating multipole expansions [22] can be
rigorously derived using traceless tensors. This implies that one should be able to derive a computational
scheme using Cartesian tensors that are optimal in the sense of FMM. The method presented herein can
be readily generalized to analyze potentials for all m or, for that matter, to any potential function whose
power series converges rapidly [27] (for instance, the Yukawa potential), and more importantly, without
the need to use special functions!

Thus, this paper will focus on the use of Cartesian tensors to derive fast computational schemes for all m.
Similar to classical FMMs, the methodologies developed herein will rely on a divide and conquer computa-
tional strategy that is facilitated by a hierarchical partitioning of the computational domain through the con-
struction of an oct-tree data structure. The underlying mathematics for two different computational methods
will be derived; in the first, operators will be derived for traversing up, down and across the tree. This tech-
nique will rely on using totally symmetric tensors. The salient feature of this method is that the traversal up
and down the tree (or shifting the origin of the multipole/local expansion) is exact. The second method pro-
duces optimal technique, in the sense of FMM, for m = 1. This optimality is achieved using traceless totally
symmetric tensors. For m 6¼ 1, it yields the same computational complexity as the first, albeit a different error
bound. One of the most interesting features of both algorithms, which separates the proposed technique from
[28], is the fact that the operators derived for traversing up and down the tree are independent of m, and only
traversing across the tree depends on m. This is a powerful feature, as one can use a single traversal up and
down the tree to compute the combined effects of different potentials! Finally, the algorithm presented does
not involve any explicit (or numerical computation of) derivatives, and quantities are expressed in terms of
(products of) traceless (or totally symmetric) tensors.

This paper is organized as follows: in Section 2 we will present relevant details and theorems regarding
tensors, detracer, Maxwell Cartesian tensors, and homogeneous polynomials. Here, we also demonstrate
the intimate connection between traceless tensors and Legendre polynomials. In Section 3, we present the
two FMM-like algorithms, implementation details, and computational cost. In Section 4, we present numer-
ous results to validate the accuracy and to demonstrate the efficiency of the proposed method. Finally, in
Section 5, we summarize the contribution of this paper.

2. Preliminaries

This section introduces basic notation and theorems that will be used in the rest of this paper. The material
presented builds upon some of the earlier work by Applequist [26,29,30]. For completeness, we have described
some of the theorems given in his papers (without proofs) as well as added some of our own (with the neces-
sary proofs).
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2.1. Tensors

A Cartesian tensor A(n) of rank n is an array of 3n components and will also be denoted either in com-

ponent notation as AðnÞa1���an
where aj 2 f1; 2; 3g. A totally symmetric tensor is one that is independent of the

permutation of indices a1 � � � an; in compressed form it contains (n + 1)(n + 2)/2 independent components,

and is denoted by AðnÞðn1; n2; n3Þ where n1 þ n2 þ n3 ¼ n. Here, ni is the number of times the index i is
repeated. For example, consider the direct product of the vectors rr � � � rr|fflfflffl{zfflfflffl}

n times

¼ rn. It forms a tensor of rank

n (and will be referred to henceforth as a polyadic) whose component can be expressed in compressed form

as rðnÞðn1; n2; n3Þ ¼ xn1 yn2 zn3 . The trace of one index pair of a tensor results in a tensor of rank n � 2 and is

denoted by Aðn:1Þ
a3���an

¼ AðnÞmma3���an
; the superscript (n:l) indicates a trace in l index pairs, and will result in a ten-

sor of rank n � l � 1. If the trace vanishes for any index pair then the tensor is totally traceless. It follows
from the above description that if a tensor is symmetric and traceless in one index pair, then it is traceless
for all index pairs.

2.2. Tensors contraction

Consider two tensors A(m+n) and B(n). The n-fold contraction between these two tensors is given by
A
ðmþnÞ
b1���bma1���an

BðnÞan���a1
, and will be denoted using C(m) = A(m+n) Æ n Æ B(n). As usual, repeated indices denote a sum-

mation over that index. Similarly, a direct product between two tensors A(n) and B(m) results in a tensor of
rank n + m. If A(n+m) and B(n) are two totally symmetric tensors, then the n-fold contraction between them
can be written in compressed notation as
CðmÞ ¼ AðnþmÞ � n � BðnÞ

CðmÞðm1;m2;m3Þ ¼
X

n1;n2;n3

n!

n1!n2!n3!
AðnþmÞðn1 þ m1; n2 þ m2; n3 þ m3ÞBðnÞðn1; n2; n3Þ

ð1Þ
It is evident that the number of operations involved in evaluating each term of the tensor CðmÞðm1;m2;m3Þ is
(n + 1)(n + 2)/2, and since there are (m + 1)(m + 2)/2 terms, the total cost of the above contraction is
(m + 1)(m + 2)(n + 1)(n + 2)/4. Next, we consider contraction between a totally symmetric tensor and two
other tensors.

Theorem 2.1. In evaluating an (n + m)-fold contraction between a totally symmetric rank C(n+m) tensor and two

tensors of B(n) and A(m) it is permissible to permute the order of contraction. In other words
AðmÞBðnÞ � ðnþ mÞ � CðnþmÞ ¼ BðnÞAðmÞ � ðnþ mÞ � CðnþmÞ
Proof. The proof is best derived in component form. The tensor C(n+m) is totally symmetric, and a permuta-
tion of any pair of indices does not alter the value of the tensor. Carrying this procedure between pairs of indi-
ces of the tensor C(n+m) results in CðnþmÞ

b1;...;bn;a1;...;am
¼ CðnþmÞ

a1;...;am;b1;...;bn
. Thus,
AðmÞBðnÞ � ðnþ mÞ � CðnþmÞ ¼ AðmÞa1;...;am
BðnÞb1;...;bn

CðnþmÞ
b1;...;bn;a1;...;am

¼ BðnÞb1;...;bn
AðmÞa1;...;am

CðnþmÞ
a1;...;am;b1;...;bn

¼ BðnÞAðmÞ � ðnþ mÞ � CðnþmÞ
� ð2Þ
Finally, we note a trivial fact that will be useful in generating methods with lower computational
complexity.

Lemma 2.2 (Non-uniqueness). Let AðnÞ;BðnÞ and C(n) be full rank tensors. Then it follows that if

A(n) Æ n Æ B(n) = C(n) Æ n Æ B(n), it implies that either (A(n) � C(n))^nB(n) or A(n) = C(n) where ^n defines an n-fold

orthogonality.
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2.3. Homogeneous polynomials

Consider a vector r 2 R3 and a homogeneous polynomial f(r) of degree n. The following lemma [30] pre-
scribes the relation between homogeneous polynomials and the polyadic rn.

Lemma 2.3. A polynomial of nth degree is homogeneous if and only if it can be written as
fnðrÞ ¼ AðnÞ � n � rn ð3Þ
where A(n) is an nth rank Cartesian tensor that is independent of r.

The proof for this lemma may be found in [26]. The following observations are also in order:

(1) The polyadic rn is totally symmetric. This implies that one can recast (3) as fnðrÞ ¼ AðnÞsym � n � rn where the
symmetric tensor AðnÞsym is related to the tensor A(n). This fact implies that a homogeneous polynomial can
always be represented in terms of symmetric tensors.

(2) The above expression can also be interpreted as a projection of an nth rank tensor along the vector
r.

(3) If the tensor A(n) is totally symmetric and the n-fold contraction with rn vanishes, i.e., A(n ) Æ n Æ rn ” 0,
then each component of A(n) vanishes. The proof for this assertion can be found in [26].

Next, the Gradient and Euler’s theorems are as follows:

Theorem 2.4. If fn(r) is a homogeneous polynomial, i.e, f(r) = A(n) Æ n Æ rn, then
rkfnðrÞ ¼
n!

ðn� kÞ! AðnÞ � ðn� kÞ � rn�k ðk 6 nÞ ð4Þ
Theorem 2.5. If fn(r) is a homogeneous polynomial of degree n P 0, then
rk � k � rkfnðrÞ ¼
n!

ðn� kÞ! fnðrÞ ðk 6 nÞ ð5Þ
In both these equations, and hereafter, the tensor operator rn ¼ r � � �r|fflfflfflffl{zfflfflfflffl}
n

. The proofs for these theorems can

be found in [26]. Likewise, it can be shown that if A(n) is totally traceless, then fn(r) is a solid spherical har-
monic of degree n. This fact will be used extensively to construct operators with low computational
complexity.
2.4. Detracer

As seen in the previous subsection, a homogeneous polynomial can be represented in terms of a contraction
of a polyadic with a traceless tensor. Obtaining a traceless tensor from a totally symmetric tensor is tanta-
mount to projecting out an nth rank irreducible tensor [31,32]. In what follows, we shall use the detracer oper-
ator that has been used for constructing Cartesian tensorial forms of spherical harmonics [26]. Formally, the
detracer operator is defined as Dn, which, when acting on a totally symmetric tensor A(n), results in a traceless
totally symmetric tensor. More specifically, this operation is defined as
DnAðnÞa1���an
¼
Xn

2b c

m¼0

ð�1Þmð2n� 2m� 1Þ!!
X
Tfag

da1a2
� � � da2m�1a2m Aðn:mÞ

a2mþ1���an
ð6aÞ
where the sum over T{a} is a sum over all permutations of a1 � � � an, and n!! denotes the double factorial of n. If
A(n) is expressed in compressed form, the same equation can be rewritten as
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DnAðnÞðn1;n2;n3Þ ¼
Xn1

2b c

m1¼0

Xn2
2b c

m2¼0

Xn3
2b c

m3¼0

ð�1Þmð2n�2m�1Þ!!
n1

m1

� �
n2

m2

� �
n3

m3

� �
�Aðn:mÞðn1�2m1;n2�2m2;n3�2m3Þ

ð6bÞ

where n ¼ n1 þ n2 þ n3;m ¼ m1 þ m2 þ m3, and
n

m

� �
¼ n!

2mm!ðn� 2mÞ! ð6cÞ
Note, that a traceless totally symmetric tensor of rank n has only 2n + 1 independent components. Some inter-
esting properties associated with the Detracer (and the proofs for the theorems that follow) can be found in
[29,30] are as follows:

Theorem 2.6 (Exchange theorem). If A(n) and B(n) are totally symmetric tensors, then
AðnÞ � n �DnBðnÞ ¼ DnAðnÞ � n � BðnÞ ð7Þ
Theorem 2.7. If A(n) is a traceless totally symmetric tensor, then DnAðnÞ ¼ ð2n� 1Þ!!AðnÞ.
Corollary 2.8. If A(n) is a totally symmetric tensor and B(n) is a traceless totally symmetric tensor then
AðnÞ � n � BðnÞ ¼ 1

ð2n� 1Þ!!DnAðnÞ � n � BðnÞ ð8Þ
Proof
AðnÞ � n � BðnÞ ¼ 1

ð2n� 1Þ!! AðnÞ � n �DnBðnÞ using Theorem2:7

¼ 1

ð2n� 1Þ!!DnAðnÞ � n � BðnÞ using Theorem2:6

ð9Þ
Corollary 2.9. If AðlÞ;BðnÞ and C(m) are traceless and symmetric tensors f8ðn;mÞ : l ¼ nþ mg and AðlÞ ¼
P

nm
cnmBðnÞCðmÞ then
DlA
ðlÞ ¼

X
nm

ð2l� 1Þ!!
ð2n� 1Þ!!ð2m� 1Þ!! cnmDnBðnÞDmCðmÞ ð10Þ
Proof. Use Theorem 2.7. h
2.5. Maxwell Cartesian tensors

An expression for solid harmonics in terms of the gradient of the position r�1 was first derived by Maxwell
of an arbitrary set of n axis [24]. In the Cartesian coordinate frame, his expressions reduce to
rnr�1 ¼ ð�1Þnr�2n�1Dnrn ð11Þ

This relationship has been obtained by others [29,33] as well. It has been shown that the components of Dnrn

are solid harmonics of degree n. Eq. (11) can be used to compute $nr�m. It can be shown that the following
expressions are valid in component form:
@i
1

rm
¼ m

rm�1
@i

1

r

@i@j
1

rm
¼ m@i

1

rm�1
@j

1

r
þ m

rm�1
@i@j

1

r

@i@j@k
1

rm
¼ m@i@j

1

rm�1
@k

1

r
þ m@j

1

rm�1
@i@k

1

r
þ m@i

1

rm�1
@j@k

1

r
þ m

rm�1
@i@j@k

1

r

ð12Þ
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From the above equation, oi denotes a partial derivative with respect to the component i. It is also evident that
this function can be constructed in terms of the traceless tensors of the type defined in (11). Furthermore, while
the tensor is totally symmetric, it is not traceless. While this equation demonstrates the relationship between
traceless Cartesian harmonics, it is easier to use
@n1
i @

n2
j @

n3
k

1

rm

� �
¼ ð�1Þnr�2n�m

Xn1
2b c

m1¼0

Xn2
2b c

m2¼0

Xn3
2b c

m3¼0

ð�1Þm
n1

m1

� �
n2

m2

� �
n3

m3

� �
� r2mf ðm; n�m� 1Þxn1�2m1 yn2�2m2 zn3�2m3

ð13Þ
to construct the n-fold gradient, where n ¼ n1 þ n2 þ n3, m ¼ m1 þ m2 þ m3, and f ðm; nÞ ¼ m� ðmþ 2Þ�
ðmþ 4Þ � � � � ðmþ 2nÞ. It can be readily shown that this definition reduces to that obtained for m = 1 [29].

Finally, consider a function f(r � r 0) where r and r 0 are used to denote the location of the observation and
source points, respectively. An addition theorem for this function may be obtained using Taylor’s expansion.
In tensorial form, this is stated as follows:

Theorem 2.10 (Taylor expansion). The function f(r � r 0) can be expressed about the origin using
f ðr� r0Þ ¼
X1
n¼0

ð�1Þn

n!
r0n � n � rnf ðrÞ ð14Þ
where r > r 0.
Proof.
f ðr� r0Þ ¼ f ðrÞ �
X3

j¼1

r0j@jf ðrÞ þ
1

2!

X3

j¼0

X3

k¼0

r0jr
0
k@j@kf ðrÞ þ � � �

¼ f ðrÞ � ðr0 � rÞf ðrÞ þ 1

2!
ðr0 � rÞ2f ðrÞ þ � � � ¼

X1
n¼0

ð�1Þn 1

n!
ðr0 � rÞnf ðrÞ

¼
X1
n¼0

ð�1Þn 1

n!
r0n � n � rnf ðrÞ � ð15Þ
This theorem gives rise to the following corollary.

Corollary 2.11. The function f(r � r 0) takes the form
f ðr� r0Þ ¼

P1
n¼0

MðnÞ � n � rnf ðrÞ for r > r0

P1
n¼0

rn � n � LðnÞ for r0 > r

8>><>>: ð16Þ
where M(n) and L(n) are the multipole and local expansions.

This formula is the foundation of fast methods that will be proposed in the next section. As an aside, it is inter-
esting to note that an application of this theorem readily leads to an equivalence between Cartesian harmonics
and spherical harmonics. Consider f(r � r 0) = R�1 where R = jRj = jr � rj0. Using Theorem 2.10 and (11), one
can readily arrive at
R�1 ¼
X1
n¼0

ð�1Þn

n!
r0n � n � rnr�1 ¼

X1
n¼0

1

n!
r�2n�1r0n � n �Dnrn ¼

X1
n¼0

1

n!

r0n

rnþ1
r̂0n � n �Dnr̂n

¼
X1
n¼0

r0n

rnþ1
P nðr̂0 � r̂Þ ð17Þ
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The above equation is immediately recognizable as being equivalent to an expansion in terms of Legendre
polynomials Pn(Æ), and provides the required equivalence between traceless Cartesian tensors and Legendre
polynomials (see references in [26] for more details). In the next two sections, we will use some of these ideas
to develop fast methods for potentials of the form R�m.
3. Fast evaluation of potentials of the form R�m

3.1. Divide and conquer strategy

Typically, potentials are evaluated between source and observation pairs that are randomly distributed
in a domain X � R3. The computational scheme developed here will follow those typically used in FMM.
To this end, the entire domain is embedded in a fictitious cube that is then divided into eight sub-cubes,
and so on. This process continues recursively until the desired level of refinement is reached; an Nl-level
scheme implies Nl � 1 recursive divisions of the domain. At any level, the (sub)domain that is being
partitioned is called the parent of all the eight children that it is being partitioned into. At the lowest level,
all source/observers are mapped onto the smallest boxes. This hierarchical partitioning of the domain is
referred to as a regular oct-tree data structure. The interactions between all source and observation points
are now computed using traversal up and down the tree structure. This is done using the following rule: at
any level in the tree, all boxes/subdomains are classified as being either in the near or far field of each
other using the following dictum: two subdomains are classified as being in the far field of each other
if the distance between the centers is at least twice the sidelength of the domain, and their parents are
in the near field of each other. Once, the interaction list have been built for all levels, the computation
proceeds as follows; at the lowest level, interaction between the elements of boxes that are in the nearfield
of each other is computed directly, i.e., using 1/Rm. All other interactions are computed using a three stage
algorithm: (i) compute multipoles of sources that reside in each box; (ii) convert these to local expansion at
all boxes that are in its far field; (iii) from the local expansion, compute the field at each observer. It is
apparent that one can gain more efficiency by embedding this scheme within itself. That is, if two domains
that interact with each other are far away, then these clusters may be combined to form larger clusters that
then interact with each other at a higher level and so on. As will be shown later, this computational
strategy considerably mitigates the overall cost. To accomplish these tasks, it is necessary to develop the-
orems that enable the following: (i) computation of multipoles at leaf (or smallest boxes); (ii) theorems to
shift the origins of multipole so that effects of small clusters can be grouped together to form larger
clusters; (iii) translate multipole expansion to local expansion; (iv) move the origin of local expansion so
that expansions at the origin of the parent may be disaggregated to those of its children; (v) finally, aggre-
gate the local expansions in a box to compute the field at all the observers. This sequence of tasks are
generally referred to as moving up, across, and down the tree, and is facilitated by the theorems developed
next.
3.2. General statement of the problem

Consider a domain Xs 2 R3 that is populated with k sources and a domain Xo 2 R3 that contains k observ-
ers. With no loss of generality, assume that these domains are spherical and of radius a. These spherical
domains completely enclose one of the cubical subdomains generated earlier. The location of these points
is random, however we will assume that the distribution in the domain is sufficiently dense and relatively uni-
form. Centers of Xs and Xo are denoted by rs and ro. It is assumed that Xs � Xs and Xo � Xo and Xs \ Xo ¼ ;.
In what follows, the domains Xs and Xo will be called parents of Xs and Xo, respectively. The parent domains
will be assumed to be spherical of size 2a, and their center are denoted by rp

s and rp
o, respectively. The potential

due to sources "ri 2 Xs observed at r 2 Xo is given by
/ðrÞ ¼
Xk

i¼1

qi

jr� rijm
¼
Xk

i¼1

X1
n¼0

ð�1Þn qi

n!
rn

i � n � rn 1

rm
¼
X1
n¼0

Xk

i¼1

ð�1Þn qi

n!
rn

i � n � rn 1

rm
ð18Þ
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This equation is derived using Theorem 2.10, and qi are values of the sources at locations ri. The exchange of
the summation indices is permissible as the summation converges. Unless otherwise stated, the operator $
operates on r. In what follows, we will prescribe the means that will enable that rapid computation of (18).
The presentation will be in two stages: (i) We will develop expressions for computing these using totally sym-
metric tensors. In this algorithm, the operations for traversing up and down the tree are ‘‘exact,’’ i.e., once the
multipole or local tensor is known at an origin, shifting the origin is exact. (ii) We will develop another meth-
od that relies on cascaded Taylor’s series expansion. Here, traversal up and down the tree is not exact. How-
ever, in our presentation, we will specialize this technique for m = 1 so as to cast it in terms of traceless tensors.
Consequently, the resulting algorithm is optimal in the number of operations. With absolute lack of imagina-
tion the two techniques will be referred to as methods 1 and 2. The error bounds of method 1 is derived as is
the computational cost of both methods. We also give insights into how these methods can be implemented.
Parenthetically, we note that in both methods, the m dependence exists only when traversing across the tree.

3.3. Method 1: Cartesian expansions with totally symmetric tensors

Theorem 3.1 (Multipole expansion). The total potential at any point r 2 Xo due to k sources qi; i ¼ 1; . . . ; k
located at points ri 2 Xs is given
/ðrÞ ¼
X1
n¼0

MðnÞ � n � rn 1

rm

MðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
rn

i

ð19Þ
where M(n) is the totally symmetric multipole tensor about the origin rs ¼ f0; 0; 0g.
Proof. See (18). h

In the above equations, the tensor M(n) is of full rank and totally symmetric. This implies that the number
of independent components is (n + 1)(n + 2)/2. As we will show in the next subsection, if this tensor is con-
tracted with another tensor that is traceless, then it is possible to use the traceless form of the multipole
moment that contains only 2n + 1 independent components.

Next, we present the first addition theorem that enables shifting the origin of multipole expansions centered
around rs to that centered around rp

s . This is facilitated by the following theorem. Note, variations of this the-
orem have been developed in other contexts [29,34].

Theorem 3.2 (Multipole to multipole expansion). Given a multipole expansion of k sources about the
rs ¼ f0; 0; 0g
OðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
rn

i ð20aÞ
then the multipole expansion about the point rp
s can be expressed in terms of (20a) as
MðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
ðri � rp

s Þ
n ¼

Xn

m¼0

X
Pðm;nÞ

m!

n!
ðrp

s Þ
n�m

OðmÞ ð20bÞ
Proof. Using (19), Theorems 2.1, 2.10 and noting that the tensors O(n) and $nr�m are totally symmetric, results
in
/ðrÞ ¼
X1
n¼0

Xk

i¼1

ð�1Þn qi

n!
ðri � rp

s Þ
n

( )
� n � rn 1

jr� rp
s jm

¼
X1
n¼0

Xk

i¼1

ð�1Þn qi

n!

Xn

m¼0

ð�1Þn�m
X

Pðn;mÞ
ðrp

s Þ
n�m

rm
i

( )
� n � rn 1

jr� r
p
s jm
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¼
X1
n¼0

Xn

m¼0

X
P ðn;mÞ

m!

n!
rp

s

� �n�m Xk

i¼1

ð�1Þm qi

m!
rm

i

" #( )
� n � rn 1

jr� rp
s jm

¼
X1
n¼0

Xn

m¼0

X
P ðm;nÞ

m!

n!
ðrp

s Þ
n�m

OðmÞ

( )
� n � rn 1

jr� r
p
s jm
¼
X1
n¼0

MðnÞ � n � rn 1

jr� r
p
s jm

ð21Þ
where P ðn;mÞ is the permutation of all partitions of n into sets n � m and m. h

Next, we prescribe the means to translate the multipole expansion that exists about rp
s to a local expansion

about rp
o. There are two ways of deriving this translation operator; (i) using reciprocity and (ii) using a Taylor’s

series expansion. The theorem that is presented next uses the first approach whereas the second approach is
used in presenting a similar operation for method 2. As is expected, both result in identical expressions.

Theorem 3.3 (Multipole to local translation). Assume that the domains Xs and Xo are sufficiently separated, and

the distance between their centers rp
os ¼ jrp

osj ¼ jrp
o � rp

s j is greater that diamfXsg and diamfXog. If a multipole

expansion M(n) is located at rp
s , then another expansion L(n) that produces the same field 8r 2 Xo is given by
/ðrÞ ¼
X1
n¼0

qn � n � LðnÞ

LðnÞ ¼
X1
m¼n

1

n!
Mðm�nÞ � ðm� nÞ � ~rm 1

rp
osð Þm

ð22Þ
where q ¼ r� rp
o.

Proof. The potential /ðrÞ8r 2 Xo is given by (19). It follows by reciprocity that if the multipole M(n) were
located at r it would produce the same potential at rp

s . In other words, the potential at all points r 2 Xo

can be computed by placing the multipole moments at r and evaluating
/ðrÞ ¼
X1
n¼0

MðnÞ � n � ~rn 1

jr� rp
s jm

ð23Þ
at rp
s . Here, ~r is the derivative with respect to rp

s . Since this valid at all points r 2 X, the multipole tensor M(n)

at r may be translated to the center rp
o. Denoting the multipole tensor at rp

o by O(n) and q ¼ r� rp
o, using the

multipole expansion theorem, we obtain the potential
/ðrÞ ¼
X1
n¼0

OðnÞ � n � ern 1

ðrp
osÞm
¼
X1
n¼0

Xn

m¼0

1

m!
qmMðn�mÞ

 !
� n � ~rn 1

ðrp
osÞm

¼
X1
n¼0

Xn

m¼0

qm � m � 1

m!
Mðn�mÞ � ðn� mÞ � rn 1

ðrp
osÞm

� �
¼
X1
n¼0

qn � n � LðnÞ ð24Þ
where
LðnÞ ¼
X1
m¼n

1

n!
Mðm�nÞ � ðm� nÞ � ~rm 1

ðrp
osÞm

ð25Þ
is obtained by gathering tensors that operate upon qn. h

Next, we prescribe the means to traverse down from rp
o to ro. This theorem is almost a mirror of that used to

go up the tree.

Theorem 3.4 (Local to local expansion). A local expansion O(n) that exists in the domain Xo centered around rp
o

can be shifted to the domain Xo centered at ro using
LðnÞ ¼
X1
m¼n

m

m� n

� �
OðmÞ � ðm� nÞ � rcp

o

� �m�n ð26Þ
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Proof. Starting with the definition of /(r), we use q ¼ r� ro þ ðro � rp
oÞ ¼ qoi þ rcp

o to obtain
/ðrÞ¼
X1
n¼0

OðnÞ �n �qn¼
X1
n¼0

OðnÞ �n �ðqoiþrcp
o Þ

n¼
X1
n¼0

OðnÞ �n �
Xn

m¼0

n

m

� �
ðrcp

o Þ
n�mðqoiÞ

m

" #
¼
X1
n¼0

LðnÞ �n �ðqoiÞ
n

ð27aÞ

where
LðnÞ ¼
X1
m¼n

m

m� n

� �
OðmÞ � ðm� nÞ � ðrcp

o Þ
m�n

� ð27bÞ
In deriving the above proof, we used Theorem 2.1 to permute the tensors, and then gathered terms associated
with (qoi)

m to arrive at the final result. Finally, the potential at any point in the Xo can be obtained using
/ðrÞ ¼
X1
n¼0

LðnÞ � n � ðqoiÞ
n ð28Þ
3.4. Method 2: Cartesian expansions with cascaded Taylor’s series

In the above subsection, the scheme presented relies on the use of totally symmetric tensors, and exact oper-
ations to traverse up and down the tree, i.e., once the multipole expansions at the lowest level are known, tra-
versal up the tree is exact. Similarly, once the local expansions are known at a level, traversal down the tree is
exact. Alternatively one can derive a fast algorithm that is based on cascaded Taylor’s series expansions. In
fact, it can be shown that the classical FMM falls into this category as do the algorithms proposed by [16–
19,28]. Note also, that for a given error, method 1 will typically require lower value of P than method 2. How-
ever, our motivation herein is to demonstrate that for m = 1, this algorithm can be formulated in terms of
traceless tensors, thus, making the number of operations optimal in the sense of classical FMM. For m 6¼ 1,
the translation operator is not traceless but a symmetric tensor. Consequently, the asymptotic cost is the same
as that of method 1.

3.4.1. Traceless operations for m = 1
As is evident in Theorem 3.1, the multipole tensor is contracted with a tensor that is both totally sym-

metric and traceless. As was mentioned earlier, the latter has only (2n + 1) independent components while
the former has (n + 1)(n + 2)/2 independent components. However, as was shown in Lemma 2.2, it may
well be possible to derive another tensor that results in lower number of operations; here, we develop a
method using traceless tensors that are henceforth denoted by a subscript t. The following Lemma dem-
onstrates this fact:

Lemma 3.5 (Traceless multipole). If the potential at a point is given in terms of contraction between the

multipole tensor M(n) and a symmetric traceless tensor, then the same potential at that point may be obtained using

an equivalent traceless symmetric tensor M
ðnÞ
t .

Proof. Starting with (19), it follows that
/ðrÞ ¼
X1
n¼0

MðnÞ � n � ð�1Þnr�2n�1Dnrn
	 


From ð11Þ

¼
X1
n¼0

ð�1Þnr�2n�1

ð2n� 1Þ!! MðnÞ � n �DnDnrn From Theorem2:7

¼
X1
n¼0

1

ð2n� 1Þ!!DnMðnÞ � n � ½ð�1Þnr�2n�1Dnrn� From Theorem2:6

¼
X1
n¼0

MðnÞ
t � n � rn 1

r

ð29Þ
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Next, we need to translate the multipoles located at rs to one that is located at rp
s . In contrast to what was done

in Theorem 3.2, the starting point of our expansion will be Theorem 3.1. The following lemma prescribes the
relation between the traceless tensor OðnÞt that exists at rs to a traceless tensor MðnÞ

t .

Lemma 3.6 (Traceless multipole to multipole). A traceless multipole tensor O
ðmÞ
t at rs ¼ ð0; 0; 0Þ is related to

M
ðmÞ
t that is centered at rp

s via
MðmÞ
t ¼

Xm

n¼0

ð�1Þn

n!

Dnðrp
s Þ

n

ð2n� 1Þ!! Oðm�nÞ
t ð30Þ
Proof. The proof presented herein relies on the repeated use of Theorems 2.6, 2.7, and Corollary 2.8. These
theorems essentially permit manipulations of the Detracer operator, as long as one of the tensors involved in
the contraction is traceless. As seen in Theorem 3.5, the tensor $nr�1 is traceless, consequently, all quantities
that are contracted with it can be made traceless as well. Starting with Lemma 3.5 and using Taylor expansion
(Theorem 2.10) results in
/ðrÞ ¼
X1
n¼0

OðnÞt � n � rn 1

r
¼
X1
n¼0

OðnÞt � n � rn
X1
k¼0

ð�1Þk

k!
ðrp

s Þ
k � k � rk 1

jr� rp
s j

" #

¼
X1
n¼0

X1
k¼0

OðnÞt � n � rn ð�1Þk

ð2k � 1Þ!!k!
Dkðrp

s Þ
k � k � rk 1

jr� rp
s j

" #

¼
X1
n¼0

X1
k¼0

ð�1Þk

ð2k � 1Þ!!k!
OðnÞt Dkðrp

s Þ
k � ðnþ kÞ � rnþk 1

jr� rp
s j
¼
X1
m¼0

MðmÞ
t � m � rm 1

jr� rp
s j

ð31Þ
where
MðmÞ
t ¼

Xm

n¼0

ð�1Þn

n!

Dnðrp
s Þ

n

ð2n� 1Þ!! Oðm�nÞ
t � ð32Þ
The next stage is the translation of the multipoles MðnÞ
t to local expansion. Indeed, the procedure for doing so

is similar to the one derived for symmetric tensors.

Lemma 3.7 (Traceless multipole to local). Assume that the domains Xs and Xo are sufficiently separated, and

the distance between their centers is rp
os ¼ jrp

osj ¼ jrp
o � rp

s j is greater that diamfXsg and diamfXog. If a traceless

multipole expansion M
ðnÞ
t for all n is located at rp

s , then another expansion L(n) that produces the same field

8r 2 Xo is given by /ðrÞ ¼
P1

n¼0q
n � n � LðnÞt where
LðnÞt ¼
X1
m¼n

1

n!
rm 1

ðrp
osÞm
� ðm� nÞ �Mðm�nÞ

t ð33Þ
Proof. The proof presented in this section relies on using another Taylor expansion to create the traceless local
expansion LðnÞt as opposed to using reciprocity to derive similar operators for Method 1. Following Theorem
3.1, assume that a multipole expansion exists at rp

s 2 Xs. Using Theorem 3.3, we can write the potential at any
point r 2 X as
/ðrÞ ¼
X1
n¼0

MðnÞ � n � rn 1

jr� rp
s j
¼
X1
n¼0

MðnÞ
t � n � rn 1

jr� rp
s j

ð34Þ
Using r� rp
s ¼ r� rp

o þ ðrp
o � rp

s Þ ¼ qþ rp
os;

~r ¼ r where ~r denotes a derivative with respect to the rp
os, and

Theorems 2.6 and 2.10 we can rewrite the above equation as
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/ðrÞ ¼
X1
n¼0

MðnÞ
t � n � rn 1

jqþ rp
osj
¼
X1
n¼0

MðnÞ
t � n � ~rn 1

jqþ rp
osj

¼
X1
n¼0

MðnÞ
t � n � ~rn

X1
k¼0

1

k!
qk � k � ~rk 1

rp
os

� �
¼
X1
n¼0

MðnÞ
t � n � ~rn

X1
k¼0

1

k!
qk

t � k � ~rk 1

rp
os

� �

¼
X1
n¼0

LðnÞ � n � qn
t Gathering tensors operating on qn

t ¼
X1
n¼0

LðnÞt � n � qn
t ð35Þ
where
qk
t ¼

1

ð2k � 1Þ!!Dkq
k

LðnÞt ¼
1

ð2n� 1Þ!!DnLðnÞ

LðnÞ ¼
X1
k¼n

1

n!
~rk 1

rp
os
� ðk � nÞ �Mðk�nÞ

t

¼
X1
k¼n

ð�1Þk

n!
ðrp

osÞ
�2k�1

Dkðrp
osÞ

k � ðk � nÞ �Mðk�nÞ
t �

ð36Þ
Next, we prescribe the means to shift the origin of the local expansion from rp
o to ro. This is facilitated by the

following Lemma.

Lemma 3.8 (Traceless local to local). Given a local expansion O
ðnÞ
t that exist in the domain Xo centered around

rp
o, it can be shifted to the domain Xo centered at ro using
LðmÞt ¼
X1
n¼0

mþ n

m

� �
OðmþnÞ

t � ðmÞ � rcp
o

� �n

t ð37Þ
Proof. The process of proving this expansion is similar to what was done for developing the expression for
multipole to local translation. The crux of this proof is that all the tensors involved are totally symmetric.
The potential at any point r 2 Xo can be written as
/ðrÞ ¼
X1
n¼0

MðnÞ
t � n � ~rn

X1
m¼0

1

m!
ðr� rc

oÞ
m
t � m � ~rm

X1
k¼0

1

k!
ðrc

o � rp
oÞ

k
t � k � ~rk 1

rp
os

 !" #

¼
X1
m¼0

X1
k¼0

mþ k

m

� �
ðr� rc

oÞ
m
t ðrc

o � rp
oÞ

k
t � ðmþ kÞ �

X1
n¼0

1

ðmþ kÞ!
~rnþmþk 1

rp
os
� n �Mn

t

¼
X1
m¼0

X1
k¼0

mþ k

m

� �
ðr� rc

oÞ
m
t ðrcp

o Þ
k
t � ðmþ kÞ �OðmþkÞ

t

¼
X1
m¼0

ðr� rc
oÞ

m
t � m �

X1
k¼0

mþ k

m

� �
ðrcp

o Þ
k
t � k �O

ðmþkÞ
t ¼

X1
m¼0

ðr� rc
oÞ

m
t � m � L

ðmÞ
t � ð38Þ
Corollary 3.9. The fields at all observation points in the finest level can be obtained using
/ðrÞ ¼
X1
m¼0

ðr� rc
oÞ

m
t � m � LðmÞt ð39Þ
The proof for this statement can be obtained trivially from the last line of the proof for Lemma 3.8.
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3.5. Error bounds

Error bounds derived herein will be for Method 1; the estimates for Method 2 can be obtained either by
nesting those obtained here or using those in [11]. As was mentioned earlier, the shifting of origin of the mul-
tipole expansion is exact as is shifting the origin of the local expansion. This implies that the error primarily
comes from two sources; (i) Taylor’s expansion to create the multipole expansion at the level that it is being
translated, and (ii) conversion to local expansion. We shall deal with both cases separately. In what follows, we
will assume that the source/observation spheres are of radius a. Consider an arbitrary constant nth rank ten-
sor, A(n). Then, the contractions
AðnÞ � n � rn 1

rm
6 CnAðnÞ � n � 1

r2nþm
rn ð40aÞ

AðnÞ � n �MðnÞ
6 Cq

1

n!
AðnÞ � n � rn

i;max ð40bÞ
where Cn and Cq are constants, and ri;max is the vector corresponding to the charge that is farthest away from
the origin. The proof for (40a) can be derived using (12) or (13). Likewise, the proof for (40b) can be trivially
derived. It follows from these expressions that the absolute error in making the multipole approximation may
be obtained using
�m ¼ /ðrÞ �
XP

n¼0

MðnÞ � n � rn 1

rm

�����
����� ¼ X1

n¼Pþ1

MðnÞ � n � rn 1

rm

�����
����� 6 X1

n¼Pþ1

MðnÞ � n � rn 1

rm

���� ����
6

X1
n¼Pþ1

CnCq
1

r2nþmn!
rn

i;max � n � rn
��� ��� 6 X1

n¼Pþ1

Cm
1

r2nþmn!
jðri;max � 1 � rÞnj ð41Þ
Using the Cauchy–Schwartz inequality, ri;max � 1 � r 6 jri;maxjjrj 6 ar, it follows that
�m 6

X1
n¼Pþ1

Cm
1

rnþmn!
an
6

X
n¼Pþ1

Cm
1

rmðP þ 1Þ!
a
r

� n
¼ 1

ðP þ 1Þ!
Cm

rm�1ðr � aÞ
a
r

� Pþ1

ð42Þ
The above error bounds imply that the expansion converges as long as the observation point lies outside the
source sphere. But the error bound is far from being tight. Next, the error bounds on truncating the local
expansions are derived as follows:
�l ¼
X1

n¼Pþ1

qn � n � LðnÞ
�����

����� ¼ X1
n¼Pþ1

qn � n �
X1
m¼n

1

n!
Mðm�nÞ � ðm� nÞ � ~r 1

ðrp
osÞm

�����
����� ð43Þ
Using the same arguments as before, it follows that
�l 6

X1
n¼Pþ1

1

ðP þ 1Þ! Clanam�n 1

ðrp
osÞmþn ¼

1

ðP þ 1Þ!
Cl

ðrp
osÞm�1ðrp

os � aÞ
a

rp
os

� �Pþ1

ð44Þ
The errors incurred in traversing up and down the tree depends on both the multipole and local errors.
Eqs. (41) and (43) imply that the approximations converge 8m 2 R, and may be used to develop estimates
for the number of harmonics necessary for a given error criterion. These bounds may also be used to de-
velop estimates for the relative error. Fig. 1 plots the predicted relative error for different values of P for
interaction between two domains of radius a whose centers are separated by 4a. The values of m chosen
for this demonstration are those that are used in the numerical results section as well. The salient facts
evident from Fig. 1 are: (i) the expansions converge for all m with increasing P, and (ii) the expansions
converge faster for m < 0 than for m > 0. Both these fact are borne out in numerical experiments in Section
4. On a slightly different note, relative error bounds derived here do not depend on the number of levels in
the tree as no error is accrued in traversing either up or down the tree. The multipole (or local) error at
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Fig. 1. Analytically derived upper bound for the error for different values of m for source/observation domains of radius a whose centers
are separated by 4a.
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any two levels in the tree are approximately the same due to the fact that both the distance r and the size
of the box a at any level are scaled by the same factor with respect to the smallest box, and this factor
drops out.

3.6. Computational methodology, cost, and implementation details

3.6.1. Computational methodology and cost

As mentioned earlier, the entire computational domain is embedded in a cubical domain that is recursively
partitioned into smaller cubes. Both near and far interaction lists are created at all levels. In what follows, we
describe the computational methodology as well as the cost associated with each operation. The cost associ-
ated will be denoted by Ci

op where i ¼ 1; 2 denotes the method used and op denotes the specific operation. It is

to be noted that the cost C2
op is specifically for m = 1. If Method 2 were to be used for evaluating potentials for

m 6¼ 1, i.e., use cascaded Taylor expansion, then the cost would be identical to that of Method 1 for all stages of
the operations. This is a result of the fact that the tensors for m 6¼ 1 are not traceless. The operations
op 2 {NF,C2M,M2M,M2L,L2L, L2O} that stand for (i) near field, (ii) charge to multipole, (iii) multipole
to multipole, (iv) multipole to local, (v) local to local, and (vi) local to observer. In what follows, we will
denote the total number of interaction points by N, the number of harmonics by P, the number of levels in
the tree by Nl and the number of boxes at any level by N b;l. It will be assumed that the interaction points
are uniformly distributed in a volume. We will also assume that the number of unknowns in each leaf box
is s. It follows that Nb;1 ¼ N=s;N b;l�1 ¼ 8N b;l, and

PNl
i¼1N b;i / N=s. With these preliminaries, the computa-

tional methodology can be prescribed as follows:

(1) Near field evaluation: At the leaf level, all boxes that lie in the near field are tabulated. This implies that
one computes the interaction between the points that are in the vicinity of each classically. Therefore,
C1

NF ¼ C2
NF, and
C1
NF / Total no: boxes� Cost of interaction of each box with its near field / N=s� 27s2

/ 27Ns ð45Þ
(2) Far field evaluation: The far field evaluation comprises of four operations.
(a) Multipole expansion: For all boxes at the lowest level, compute the multipole expansion for all charges

that reside in it. This is done using Theorem 3.1 for method 1 or Lemma 3.5 for method 2. The former
forms a set of totally symmetric tensors whereas the latter forms traceless tensors. The cost for this
operation is
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Ci
C2M / total no of level 1 boxes� Cost for each box

/ total no of level 1 boxes� no: charges per box

� cost per tensor� no of tensors

C1
C2M /

N
s
� s�

XP

p¼0

ðp þ 1Þðp þ 2Þ=2

/ N
6

P 3

� �
C2

C2M /
N
s
� s�

XP

p¼0

ð2p þ 1Þ

/ NP 2

ð46Þ
(b) Multipole to multipole: For all boxes, at any given level, compute the multipole expansion for the par-
ent box from those of its children. This operation is repeated at all levels. As with the classical FMM,
the number of operations is independent of child/parent levels. The cost for obtaining a term in the
nth rank multipole tensor scales as (m � n + 1)(m � n + 2)/2) for m ¼ n; . . . ; P . Given that there are
(n + 1)(n + 2/2 independent terms in nth rank tensor, the cost for constructing all terms of the tensor
scales as
Cost child multipole to parent multipole1 ¼
XP

n¼0

ðnþ 1Þðnþ 2Þ=2
XP

m¼n

ðm� nþ 1Þðm� nþ 2Þ=2

¼
Y6

i¼1

ðP þ iÞ
i

ð47aÞ
The number of operations specified in this equation is exact and exploits the total symmetry of the
tensors involved. Similarly, the number of operations required when using traceless tensors is
Cost child multipole to parent multipole2 ¼
XP

n¼0

ð2nþ 1Þ
XP

m¼n

ð2ðm� nÞ þ 1Þ

¼
XP

n¼0

ðP � nþ 1ÞðP � n� 1Þð2nþ 1Þ ð47bÞ
This implies that the cost
Ci
M2M / Total number of multipole to multipole translations� Cost per translation

C1
M2M /

N
s
�
Y6

i¼1

ðP þ iÞ
i

C2
M2M /

N
s
�
XP

n¼0

ðP � nþ 1ÞðP � n� 1Þð2nþ 1Þ

ð48Þ
(c) Multipole to local translation: The cost for translating P + 1 multipole tensors of one box to local ten-
sors at another is that in (47a) for symmetric tensors and (47b). Consequently, the cost for translation
scales as
Ci
M2L / No: translations per box�No of boxes� cost for one translation

C1
M2L / 189

N
s

Y6

i¼1

ðP þ iÞ
i

C2
M2L / 189

N
s

XP

n¼0

ðP � nþ 1ÞðP � n� 1Þð2nþ 1Þ

ð49Þ
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(d) Local to local translation: The cost is exactly the same as that for multipole to multipole translation,
i.e., C1

L2L ¼ C1
M2M and C2

L2L ¼ C2
M2M.

(e) Local to observer: Again, the cost for this operation is exactly the same as that for mapping charge to
multipoles, i.e., C1

L2O ¼ C1
C2M and C2

L2O ¼ C2
C2M.

The above analysis implies that the cost for the total analysis scales as
Ci
cost ¼ Ci

NF þ Ci
C2M þ Ci

M2M þ Ci
M2L þ Ci

L2L þ Ci
L2O for i ¼ 1; 2

C1
cost / 27Nsþ 191

N
s

P 6

720
þ NP 3

3

C2
cost / 27Nsþ 191

N
s

P 4

2
þ 2NP 2

ð50Þ
It is readily apparent that the optimal number of unknowns per box is s � P3/10 for method 1, and s � P2 for
method 2. Existing methods for R�m [18,19] do not use symmetry in their formulations. Consequently, their
translation cost does not have a factor of 1/720, and their cost will be more expensive for a given value of
P. Given that the cost reduction is a consequence of symmetric tensors, the application of method 2 to R�m

will have identical cost as method 1. The application of method 2 to R�1 results in a complexity that is very
similar to that of the classical FMM algorithm that was presented in [11] with an exception of a factor of 1/2 in
the translation term. However, recent improvements to the classical FMM scheme have reduced the P4 scaling
to P3 by using a plane wave based translation operator [14]; using a plane wave based translation operator has
enabled some algorithmic changes that have further reduced the ‘‘cost in front.’’ Similar modifications to
method 2 are possible for m = 1.

3.7. Implementation subtleties

Two issues stand out when implementing this algorithm; (i) the nth rank operators used for multipole to
multipole translation from level l! l + 1 and those used for doing the same from level l + 1! l + 2 differ
by a multiplicative constant; (ii) similarly, the nth rank translation operator for translation of multipole from
level l! l + 1 and that used for translating multipoles from l + 1! l + 2 are related by a constant. Both these
statements can be proven by examining the explicit forms of the operators involved. These facts imply that
these operators need to be constructed and stored only for boxes at the lowest level and all others can be read-
ily obtained by the operations listed above.

It is also evident that the key component of the cost equation is the number of translations and the number
of operations necessary to compute each translation. Some modifications that were originally suggested in [14]
can be adapted to this algorithm. Indeed, since the error in shifting the multipole expansion is negligible, one
can cluster translations to further reduce the total number of translations. Furthermore, one can exploit the
structure of the tensor contractions involved in translation. Some of these improvements have already had a
positive impact on the speed of the resulting code [35].

Finally, as with all tree codes (and FMM), the algorithm may be made adaptive in terms of the number of the
tensors used, with very little loss in precision. For example, at higher levels in the tree (which correspond to inter-
actions that are further away in space), one could reduce P as the potential is dominated by interactions that are
closer. However, in the results presented herein, this is not done. Finally, while the resulting power series expan-
sion is convergent, a concern is the numerical stability of the resulting series. It will be evident in Section 4 that
for the range of P, s and m, this is not a concern. However, further insights into the behavior of the series can be
gleaned from (13), and using this expression to compute higher order derivatives yields stable results.

4. Results

In this section, we will demonstrate the validity of the numerical method presented via numerous examples.
The overarching goals of this section are as follows: (i) numerically show that the traversal up and down the
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tree can be performed exactly, (ii) demonstrate that the proposed method produces accurate results for differ-
ent values of m, (iii) demonstrate that this scheme can be used seamlessly for computing potentials that are
superposition of potential of the form R�m for multiple values of m using a single tree traversal, and (iv) exper-
imentally demonstrate that the proposed scheme scales as OðNÞ. In all experiments, the error will be computed
using the following:
Table
The va

P = 2
P = 5
P = 8
P = 11

Table
Variat
potent

P = 2
P = 5
P = 9
P = 15
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ið/numðriÞ � /exactðriÞÞ2P

i/
2
exactðriÞ

s
ð51Þ
As is commonly done, all near field interactions are ignored. This gives us a measure of the error produced by
the multipole representation. All timing runs are performed on a Linux desktop that has a 2.8 GHz Intel pro-
cessor, and the run times reported are obtained using an intrinsic function dtime. Finally, P will denote the
maximum rank of the tensor used in expansions.

First, we will demonstrate the accuracy of operators used to traverse up and down the tree. The geometric
configuration analyzed is as follows: 8000 source/observers populate a cube of dimension 4 · 4 · 4. Of these,
4000 are located at X1 ¼ ð0:0; 1:0Þ � ð0:0; 1:0Þ � ð0:0; 1:0Þ, and the rest are located in X2 ¼ ð3:0; 4:0Þ�
ð3; 0; 4:0Þ � ð3:0; 4:0Þ. The distribution of the points is uniformly random, i.e., the distribution in the domain
is almost uniform. This arrangement ensures that following; particles in X1 and X2 interact with each other at
level 3. For a given P, the error bound for this interaction can be computed. As we increase the number of
levels, the change in the error norm can be attributed solely to the error multipole-to-multipole and local-
to-local translations. Table 1 documents the error obtained for different values of P and different levels (while
we have data for all 10 levels, only some are presented). All computations are carried out for m = 2.2. As is
evident from the results presented, the variation of the error obtained from using different levels in the tree
is accurate to double precision. Next, we perform a similar experiment, but for the lattice gas potential
(/ðrÞ ¼

P
iqi lnfjr� rijg) that is very commonly used in the electronic structure calculations. Again, as is evi-

dent from Table 2, the variation of errors for different levels is within double precision accuracy. Note, the
translation operator for this function can be readily derived from the material presented earlier.

In the next series of numerical experiment, we demonstrate the efficiency and convergence of the proposed
method. This is done by analyzing potentials due to randomly distributed sources at random observation
points. In what follows, the source/observation points are co-located, and are randomly distributed. Four dif-
ferent computational domains are chosen: (0.0,1.0)3, (0.0,2.0)3, (0.0,4.0)3 and (0.0,8.0)3. These domains are
populated with 500, 4000, 32,000, and 256,000 source/observers. As mentioned earlier, the size of the smallest
box X0 depends on the degree of approximation P. This implies that the number of levels in the tree will vary
with P. Tables 3–5 demonstrate convergence and speed for m = 1, 3.3, �3.3. All errors reported are computed
1
riation of errors in multipole to multipole and local to local operations with fixed translation error for m = 2.2

Nl = 3 Nl = 5 Nl = 7 Nl = 10

3.268070962493116E�003 3.268070962493099E�003 3.268070962493107E�003 3.268070962493042E�003
2.866109269813751E�005 2.866109269813507E�005 2.866109269812455E�005 2.866109269808440E�005
4.207517301400774E�007 4.207517302158528E�007 4.207517301963213E�007 4.207517301868480E�007
7.470454043399749E�009 7.470454038637677E�009 7.470454030684618E�009 7.470454009643825E�009

2
ion of errors in multipole to multipole and local to local operations with fixed translation error for computing the lattice gas
ial function

Nl =3 Nl=5 Nl=7

2.194595063535085E�004 2.194595063534782E�004 2.194595063534947E�004
2.949087946097283E�007 2.949087945862075E�007 2.949087945902640E�007
4.696476490009492E�010 4.696476221096208E�010 4.696476168731461E�010
5.455886813905556E�014 5.453948560581605E�014 5.451163061523909E�014



Table 3
Errors in Coulomb potential (m = 1) computed using the proposed scheme and the directly

No. source P X0 Levels Error TFast Tdir

500 2 0.25 3 9.383889728802543E�004 9.9999998E�03 2.0000000E�02
4000 2 0.25 4 4.985339577918570E�004 0.1100 2.010

32,000 2 0.25 5 3.973997680645289E�004 1.7500 148.430
256,000 2 0.25 6 3.784618677245141E�004 16.710 10414.19

1,000,000 2 0.25 7 3.6E�004 (est) 72.14 194332.45 (est)

500 6 0.35 3 5.834474875595625E�005 2.9999999E�02 2.0000000E�02
4000 6 0.35 4 1.832900991458556E�005 0.8500000 1.880

32,000 6 0.35 5 1.051430847990692E�005 10.780 141.350
256,000 6 0.35 6 9.205740607568288E�006 93.650 9469.240

4000 13 0.7 3 7.635060722002502E�007 0.7600 1.010
32,000 13 0.7 4 2.840304330201046E�007 24.030 127.490

256,000 13 0.7 5 2.217480629486048E�007 297.080 9253.120
32,000 22 1.0 3 8.349236749350626E�009 57.090 105.440

256,000 22 1.0 4 6.279167576858578E�009 977.80 8988.850

Timing data for the two methods are reported as well.

Table 5
Errors in potential R3.3 computed using the proposed scheme and directly

No. source P X0 Levels Error TFast Tdir

500 2 0.25 3 7.808229350307999E�003 9.9999998E�03 2.9999998E�02
4000 2 0.25 4 7.991114181824263E�003 0.130 2.020

32,000 2 0.25 5 7.805327383259029E�003 1.700 152.810
256,000 2 0.25 6 7.879062974909005E�003 16.670 10115.84

500 7 0.4 3 1.673554596784708E�006 3.9999999E�02 9.9999998E�03
4000 7 0.4 4 1.204438060165841E�006 0.670 1.760

256,000 7 0.4 6 1.075404282226350E�006 106.1900 9793.580

4000 10 0.6 3 1.201260595754149E�008 1.190 1.340
32,000 10 0.6 4 6.210238339838771E�009 12.650 134.820

256,000 10 0.6 5 5.031536892676515E�009 149.850 9446.090

Table 4
Errors in potential 1/R3.3 computed using the proposed scheme and directly

No. source P X0 Levels Error TFast Tdir

500 4 0.25 3 6.634150584493979E�003 3.9999998E�02 2.9999998E�02
4000 4 0.25 4 4.633100292496714E�003 0.6799999 2.090

32,000 4 0.25 5 3.478008063355080E�003 7.679999 155.5600
256,000 4 0.25 6 3.009871545496196E�003 72.75999 10626.05

4000 10 0.5 4 8.802364554779558E�005 1.170000 1.550
32,000 10 0.5 5 4.384002845526768E�005 20.430 137.240

256,000 10 0.5 6 2.980527001092105E�005 225.350 9549.740

32,000 22 1.0 3 5.803550600029765E�007 56.7500 105.2500
256,000 22 1.0 4 3.983657151956554E�007 979.7199 8981.890

Timing data for the two methods are reported as well.
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using (51). As is evident from these tables, the proposed method converges rapidly for different values of m, and
is faster than the direct computation. The convergence behavior follows the trends expected for different val-
ues of m, as does the timing data with respect to the number of harmonics. Again, as reported earlier, it is pos-
sible to choose the size of the smallest box to optimize the timing data; while this is not done precisely here, the
size of the smallest box is varied depending on the desired accuracy (P). The breakeven point, of course,
depends on the accuracy (and m). For m = 1, and P = 2 (which results in an error of 10�4), the breakeven point
is as low as 250 source/observers. It should be noted that in obtaining this timing data, we have not fully opti-
mized the M2L stage in keeping with some of the development suggested in [14] and in papers thereafter. Even
so, the timing data obtained for m = 1 and accuracy of 10�4 favorably compares with some of the most opti-
mized codes.

Next, we demonstrate the application of this technique to compute the Lennard-Jones potential. The com-
putational domain X ¼ ð0:0; 1:0Þ3 is filled with 12,167 source/observers whose location is uniformly random.
The potential computed is of the form /(r) = qi(1/R12 � 6/R6). A uniform oct-tree with five levels are con-
structed. As was noted earlier, the traversal up and down the tree are independent of the potential, and only

the translation across the tree depends on the specifics of the potential being computed. Table 6 tabulates the
error with increasing P. As is evident, the potential computed converges rapidly with increasing P.

Finally, we compare the computational cost of the proposed scheme with that of direct computation. Tim-
ing data for domains of increasing size are obtained; the number of source/observation pairs vary from 500 to
1,000,000. The density of particles in the domain is chosen to be 500 per unit cube, the particles are randomly
distributed in the domain, and m = � 1.5. The precision P ¼ f2; 4; 10g, which translates to errors ranging from
10�3; 10�6 and 10�8, respectively. In the simulation, the size of the smallest box was kept the same, i.e.,
X0 = 0.25 for all values of P. All simulations are run on a Linux desktop (running Redhat9.0) with
2.8 GHz Intel Pentium processor with the Intel Fortan compiler. The timing data is obtained using the intrin-
sic function dtime. Fig. 2 compares the time required for computing pairwise potentials classically and using
Table 6
Error in the Lennard-Jones potential; the computations are performed using one tree

P Error

10 4.614155995813005E�002
14 6.242473037897023E�003
18 3.954018566296799E�004
22 8.407075999784559E�005
32 1.246581347878108E�006
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Fig. 2. Cost scaling of the direct method and the fast algorithm (ACE) for different values of the precision P for computing the potential R1.5.
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the methodology presented herein. It is evident from Fig. 2 that the cost scales as OðNÞ; the slopes of all three
fast methods is approximately 1.0. A noteworthy fact is that the breakeven point, i.e., the number of
unknowns above which the proposed technique is computationally more efficient, is as low as 250 source/
observation points for an error of 10�3.

5. Summary

In this paper, we have developed two methods for rapidly computing potentials of the form R�m. Both these
methods are founded on addition theorems based on Taylor expansions. Taylor’s series has a couple of inher-
ent advantages: (i) it forms a natural framework for developing addition theorem based computational
schemes for a range of potentials; (ii) only Cartesian tensors (or products of Cartesian quantities) are used
as opposed to special functions. This makes creating a fast scheme possible for potential of the form R�m.
Indeed, it is also possible to generalize the proposed methods to several potentials that are important in math-
ematical physics [27]. An interesting consequence of the approach has been the demonstration of the equiva-
lence of FMMs that are based on traceless Cartesian tensors to those based on spherical expansions for m = 1.
Finally, we have shown the application of this methodology to computing Coulombic, Lennard-Jones, and
lattice gas potentials. We have also demonstrated the efficacy of this scheme for other (non-integer) potential
functions. Current research is focused on generalizing the proposed methodology to analyze Yukawa and peri-
odic columbic potentials, retarded and Helmholtz potential for sub-wavelength regimes [35], and fast Gauss
transform. Finally, application of is scheme to problems in biophysics, electronic structure calculations, and
MD codes are currently underway.
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